# ArUco Tracking with Pose Detection


import math

import numpy as np

import cv2



def main():

# read in video

video_cap = cv2.VideoCapture("input_vid.avi")


# set up video output

width = int(video_cap.get(3))

height = int(video_cap.get(4))

fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')

videoWriter = cv2.VideoWriter("output.avi", fourcc=fourcc, fps=30.0, frameSize=(width, height))


# camera properties:

fx = 675

fy = 675

cx = 320

cy = 240

K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])


# ArUco tag properties

MARKER_LENGTH = 2


# create ArUco tag dictionary

arucoDict = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_4X4_100)


# VIDEO LOOP

# =====================================================================================================

while True:

got_image, bgr_image = video_cap.read()

if not got_image:

break # End of video; exit the while loop


# convert to grayscale

grayscale = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)


# histogram equalizing on grayscale image, this will help find ArUco tags later

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))

grayscale = clahe.apply(grayscale)


# create binary image

output_thresh, binary_image = cv2.threshold(grayscale, 0, 255, cv2.THRESH_OTSU)


# find tags, mark them

corners, ids, _ = cv2.aruco.detectMarkers(image=binary_image, dictionary=arucoDict)

if ids is not None:

cv2.aruco.drawDetectedMarkers(image=bgr_image, corners=corners, ids=ids, borderColor=(0, 0, 255))


dist_coeff = None

aruco_rvecs, aruco_tvecs, _ = cv2.aruco.estimatePoseSingleMarkers(corners=corners,

markerLength=MARKER_LENGTH,

cameraMatrix=K.astype(

"float32"),

distCoeffs=dist_coeff)

# get translation and rotation vectors of tags

aruco_rvec = aruco_rvecs[0]

aruco_tvec = aruco_tvecs[0]

aruco_rmat = cv2.Rodrigues(aruco_rvec)[0]


# draw pose of tags

cv2.aruco.drawAxis(image=bgr_image, cameraMatrix=K.astype("float32"), distCoeffs=dist_coeff,

rvec=aruco_rvec, tvec=aruco_tvec, length=MARKER_LENGTH)


pyramid_coord = np.array([[-0.7, -0.7, -2.6], [0.7, -0.7, -2.6], [0.7, 0.7, -2.6],

[-0.7, 0.7, -2.6], [0, 0, 0]])


if ids[0] == 1: # if ID 1 is showing, use these coordinates for power switch location

switch_loc = np.array([[-2.5, -2.0, -5.0]])

theta_z_pyramid = math.radians(90)

elif ids[0] == 0: # if ID 0 is showing, use these coordinates

switch_loc = np.array([[2.5, -2.0, -1.0]])

theta_z_pyramid = -math.radians(90)

else:

continue

# find sines and cosines for rotation matrix of pyramid

sz = math.sin(theta_z_pyramid)

cz = math.cos(theta_z_pyramid)

R_pyramid = np.array([[cz, 0, sz], [0, 1, 0], [-sz, 0, cz]])


# pyramid coordinates to tag coordinates

H_p_t = np.block([[R_pyramid, switch_loc.T], [0, 0, 0, 1]])


# tag coordinates to camera coordinates

H_t_c = np.block([[aruco_rmat, aruco_tvec.T], [0, 0, 0, 1]])


# pyramid to camera transform

H_p_c = H_t_c @ H_p_t

Mext = H_p_c[0:3, :]


# create matrix to store points of pyramid, this will be used to draw the lines later

points = np.empty(shape=(5, 2))

point_count = 0

for i in pyramid_coord:

P_w = np.append(i, [1])

p = K @ Mext @ P_w

p = p/p[2]

# store points to use to draw lines for pyramid

points[point_count, 0] = p[0]

points[point_count, 1] = p[1]

point_count += 1


for i in points:

cv2.line(bgr_image, pt1=(int(i[0]), int(i[1])), pt2=(int(points[4, 0]), int(points[4, 1])),

color=(0, 0, 255), thickness=2)


point_count = 0

for i in range(4):

cv2.line(bgr_image, pt1=(int(points[point_count, 0]), int(points[point_count, 1])),

pt2=(int(points[point_count + 1, 0]), int(points[point_count + 1, 1])), color=(0, 0, 255),

thickness=2)

point_count += 1


cv2.line(bgr_image, pt1=(int(points[0, 0]), int(points[0, 1])),

pt2=(int(points[3, 0]), int(points[3, 1])), color=(0, 0, 255), thickness=2)


# write to output

videoWriter.write(bgr_image)


# show frame

cv2.imshow("ArUco Tracking", bgr_image)

cv2.waitKey(30)


# =====================================================================================================


videoWriter.release()



if __name__ == "__main__":

main()